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Summary the paternal chromosome 15q11-q13 region, because of
a cytogenetically visible interstitial deletion (Ledbetter et

The lack of normally active paternal genes in 15q11- al. 1981; Butler 1990). Virtually all the remaining PWS
q13, as an outcome of either a paternal deletion or ma- patients are cytogenetically normal but lack paternal ex-
ternal disomy, accounts for ú95% of all patients with pression of proximal chromosome 15q, because of mater-
Prader-Willi syndrome. Other mechanisms, including nal uniparental disomy (UPD) (Mascari et al. 1992). A
imprinting mutations and unbalanced translocations in- third class of PWS patients, with typical PWS features,
volving pat 15q11-q13, have been described elsewhere. involves mutations that affect the mechanism of genomic
In this study, we present a patient with a rare balanced, imprinting at 15q11-q13, resulting in a maternal methyl-
de novo translocation—46,XY,t(2;15)(q37.2;q11.2)— ation pattern on the paternally derived allele (Buiting et
involving breakage within the Prader-Willi/Angelman al. 1995; Saitoh et al. 1996, 1997). In this study, however,
syndrome region of the paternal homologue, without we report a PWS patient demonstrating a balanced de
an apparent deletion. The patient demonstrated several novo translocation—46,XY,t(2;15)(q37.2;q11.2)—that
manifestations of the Prader-Willi syndrome but was manifests as clinical PWS but with atypical features. Re-
clinically atypical. Cytogenetic and molecular studies of cently, two other PWS patients with apparently balanced
this case demonstrated the translocation breakpoint to translocations involving 15q11-q13 have been reported
be between SNRPN and IPW, with mRNA expression (Schulze et al. 1996; Sun et al. 1996). Describing the
of SNRPN and PAR-5 but absence of IPW and PAR-1 clinical phenotype of this new patient along with the
expression. These results suggest that disruption of ei- molecular and cytogenetic findings may allow better cor-
ther IPW expression or a nearby gene by an upstream relation between a demonstrated molecular abnormality
break may contribute to the Prader-Willi syndrome phe- and an atypical clinical presentation of PWS.
notype and that expression of SNRPN or other upstream
genes is responsible for other aspects of the classical Patient, Material, and Methods
Prader-Willi syndrome phenotype.

Clinical Report
The proband was the product of a 41-wk pregnancy

Introduction of a 27-year-old gravida 4, para 3, AB 1 Caucasian
mother and a Hispanic father. There were no significantPrader-Willi syndrome (PWS) is a complex disorder char-
complications or exposures. The fetus was normally ac-acterized by neonatal hypotonia and failure to thrive,
tive until 39 wk of gestation. Routine prenatal ultra-with subsequent delay of motor development. Short stat-
sound was normal. He was delivered by cesarean sectionure, mental deficiency, hypogonadism, short hands and
because of fetal distress, and a nuchal cord was noted.feet, and hyperphagia with obesity usually manifest in
Birthweight was 3,040 g (25th–50th percentile), lengthearly childhood (Cassidy 1984; Butler 1990). Approxi-
was 56.0 cm (98th percentile), head circumference wasmately 70% of cases are caused by a loss of material in
36.25 cm (50th–98th percentile), and Apgars were 8
at 1 min and 9 at 5 min. Initial examination revealed
micrognathia, a 3.5-cm normal penis, normal scrotum,Received December 31, 1996; accepted for publication May 8,
and cryptorchidism, the latter resolving spontaneously1997.

Address for correspondence and reprints: Dr. Stuart Schwartz, Cen- by age 1 wk. Endocrinological evaluation revealed the
ter for Human Genetics Lab, Case Western Reserve University, 11001 following: elevated 17-hydroxyprogesterone, 2.0 ng/ml
Cedar Avenue, Suite 510, Cleveland, OH 44106-9959. E-mail: (normal õ1.5 ng/ml); Na, 135 mmol/liter; cranial ultra-
sxs95@po.cwru.edu

sound, normal; pelvic ultrasound, no uterus but pres-� 1997 by The American Society of Human Genetics. All rights reserved.
0002-9297/97/6102-0018$02.00 ence of two ovoid structures suggestive of testes. He
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exhibits a high pain threshold, has poor articulation,
and is not yet toilet trained.

The proband thus has several characteristics of PWS,
including neonatal hypotonia with poor suck, global
developmental delay, hyperphagia, excessive weight
gain, behavior problems, thick viscous saliva, and skin
picking; however, he lacks several characteristic fea-
tures, including small genitalia (especially, hypoplastic
scrotum), a period of failure to thrive, short stature, and
small hands and feet. In addition, his behavior problems
began earlier and are more severe than is usual for PWS.
Thus, although he satisfies diagnostic criteria for PWS,
with the minimal required points, he is significantly
atypical (Holm et al. 1993).

Cytogenetic Studies
Cytogenetic analysis of GTG-banded chromosomes

from peripheral blood was performed on the proband
and his parents, according to a modified method of Ike-
uchi (1984), as we have described elsewhere (Micale et
al. 1995). Chromosomes were GTG banded, and §20Figure 1 Proband at age 41/2 years. For clinical details, see the
chromosomal spreads were examined from two cultures.text.

Isolation and Mapping of Phage Clones
The phage are subclones of YAC 457B4 (Buiting et

developed mild jaundice. Normal newborn genetic al. 1995). They were mapped to the IPW region by
screening ruled out phenylketonuria, homocystinuria, pulsed-field gel analysis of the overlapping YACs 457B4
maple syrup urine disease, galactosemia, hypothyroid- and 132D4, restriction-enzyme mapping, and hybridiza-
ism, and biotinidase deficiency. He had neonatal hypoto- tion with probes for IPW, PAR-1, and D15S174.
nia and lethargy, with poor suck, necessitating special Pulsed-field gel analysis and hybridization conditions
feeding techniques, but he never had a period of failure were as described by Buiting et al. (1993).
to thrive. He had normal amino acids, organic acids,
carnitine levels, electromyogram study, and magnetic FISH Studies
resonance–imaging scan of the brain. Very-long-chain FISH was performed by use of both cosmids and
fatty-acid analysis revealed normal C26:0 and phytanic phage probes on unstained slides, according to our pre-
acid; however, the ratios of C24:22 and C26:22 were viously published methods (Sullivan et al. 1996), with
slightly higher. Very-long-chain fatty acids in fibroblasts minor modifications. At least 10—and, in most cases,
were normal. 20—metaphases were analyzed for the presence of

He had alternating esotropia as an infant. His devel- probe signal on both the normal and the derived chro-
opment was delayed; he sat at age 15 mo, walked at age mosomes.
2 years, and first used words at age 21/2 years. He had Digital images were captured by use of a Zeiss epiflu-
onset of obesity at age 11/2–2 years, with excessive appe- orescent microscope equipped with a cooled CCD cam-
tite and food foraging. He had behavior problems that era (Photometrics CH250) controlled by an Apple Mac-
included temper tantrums and severe aggressiveness. Intosh computer. Gray-scale source images were

He has a half-brother with poor growth and another captured separately with DAPI, fluorescein, and rhoda-
with attention deficit/hyperactivity disorder. At age 41/2 mine filter sets and were merged and pseudocolored by
years, his weight was ú95th percentile, his height was use of Gene Join software (Yale University).
at the 50th–75th percentile, and his head circumference

Somatic-Cell Hybridswas ú98th percentile. His hands and feet were puffy but
of normal lengths (75th–97th percentile), with tapered A lymphoblastoid cell line was established from the
fingers. The scrotum was normal, and penile length was proband, according to the method of Neitzel (1986).
at the 10th percentile. The patient had a squared nasal Cells (5 1 1010 cells) were pelleted, washed, and subse-
tip, narrow bifrontal diameter, and downturned mouth quently mixed with a Chinese hamster cell line, Ade-c
with thick viscous saliva (fig. 1). Currently, at age 5 (which is deficient in GART activity), and were fused

with polyethylene glycol (PEG 1500). Hybrid clonesyears, he is enrolled in a special preschool setting. He



390 Am. J. Hum. Genet. 61:388–394, 1997

were picked and transferred into 24-well plates. DNA
was extracted from each clone and was examined by
PCR with microsatellite markers from chromosome 15.
After confirmation of the presence of chromosome 15
material by PCR analysis, the hybrids were analyzed by
standard cytogenetic techniques, to determine whether
a normal chromosome 15, a der(2) (i.e., a derived chro-
mosome 2), or a der(15) (i.e., a derived chromosome 15)
was present. Twenty-five different clones were searched
until one containing the der(15) was identified.

Molecular Studies
High-molecular-weight DNA was extracted and puri-

Figure 2 Partial GTG-banded karyotype of a normal chromo-fied from peripheral blood leukocytes, transformed
some 2, a normal chromosome 15, and the t(2;15)(q37.2;q11.2) trans-lymphoblasts, and somatic cell hybrids, by use of a com-
location.mercial DNA isolation kit (Puregene; Gentra Systems).

Total cellular RNA was isolated from transformed
lymphoblasts by use of the Purescript RNA isolation kit

translocation between the distal end of the long arm of(Gentra Systems). Both DNA and RNA extraction were
chromosome 2 and the proximal long arm of chromo-done according to manufacturers’ instructions.
some 15, with the breakpoints assigned to 2q37.2 andDNA methylation was investigated at two loci. Ten
15q11.2: 46,XY,t(2;15)(q37.2;q11.2) (fig. 2). FISHmicrograms of DNA from peripheral blood and from a
analysis of these chromosomes by means of a DNAsomatic-cell hybrid containing the der(15) was double-
probe specific for SNRPN hybridized to the der(15),digested with either Not1 and Xba1 (SNRPN exon 01)
whereas a DNA probe for D15S10 hybridized to theor HindIII and HpaII (DN34/ZNF127), overnight at
der(2) (fig. 3), indicating that the breakpoint was be-37�C. These specimens were prepared by use of methods
tween these two loci. FISH analysis subsequent to thedescribed elsewhere (Glenn et al. 1993; Saitoh et al.
initial finding, to rule out a possible deletion, was done1997). The two probes used for these methylation stud-
with phages obtained from the telomeric part of YACies were a 1.3-kb fragment of DN34/ZNF127 (Glenn et
457B4, which includes the IPW locus (Buiting et al.al. 1993) and a 650-bp PCR-amplified fragment con-
1995). Phage clones l48.14, l48.35, l48.48, and l48.7taining exon 01 of SNRPN (Glenn et al. 1996). Highly
all hybridized to the der(2). However, FISH with thepolymorphic microsatellite markers for loci within
12-kb phage clone l48.34 demonstrated a split signal,15q11-q13 (Mutirangura et al. 1993) were analyzed by
with hybridization to both the der(2) and the der(15).PCR on peripheral blood–leukocyte DNA and on so-
These findings suggest that the break occurred withinmatic-cell hybrid DNA, by standard techniques (Micale
this 12-kb sequence and essentially exclude the presenceet al. 1995).
of a deletion (figs. 4 and 5); however, a small deletion

Reverse Transcriptase–PCR (RT-PCR) Studies cannot be ruled out. FISH was also performed with sev-
RT-PCR analysis of 5 mg RNA from transformed eral different YACs, to rule out the possibility of disrup-

lymphoblasts from the patient, as well as controls from tion of the Albright hereditary osteodystrophy (AHO)
a PWS patient, an Angelman syndrome (AS) patient, critical region on 2q (Phelan et al. 1995; Wilson et al.
and normal individuals, were performed for SNRPN, 1995). Hybridization with YACs 938A7 (distal to
PAR-5, IPW, and the PAR-1 transcripts, by use of stan- D2S338 and D2S345) and 824C8 (proximal to D2S338
dard conditions. Another 5-mg sample of RNA was used and D2S345) demonstrated hybridization only on the
as an RT-minus control. For the primer sequences uti- der(15). Since the AHO critical region is distal to
lized for SNRPN (exons 01 to 8), see the reports by D2S338, these studies suggest that this region was not
Glenn et al. (1996) and Sun et al. (1996); for PAR-1 disrupted and was not the cause of phenotype in our
and PAR-5, see the report by Sutcliffe et al. (1994); for patient.
IPW, see the report by Wevrick et al. (1994). Products

UPD Studies and Methylation Analysiswere separated on 2.5% agarose gel and were stained
To determine whether the findings in this case werewith ethidium bromide.

due to maternal UPD 15, microsatellite analysis of multi-
Results ple sequence-tagged sites on chromosome 15 was done
Delineation of Abnormality (table 1). Microsatellite analysis of DNA from the pro-

band and his mother, at loci both proximal (D15S18)High-resolution cytogenetic analysis of the proband’s
chromosomes demonstrated an apparently balanced and distal (GABRA5 and D15S165) to the breakpoint,
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Figure 3 FISH using commercially available clone SNRPN and D15S10. The SNRPN probe (left) can be seen on both the normal
chromosome 15 and the der(15) (white arrow) but not on the der(2) (yellow arrow), and the D15S10 probe (right) can be seen on both the
normal chromosome 15 and the der(2) (white arrow) but not on the der (15) (yellow arrow). In both photos a control probe (PML; Oncor)
localized to 15q22 can be seen on both the normal chromosome 15 and the der(2).

demonstrated normal biparental inheritance. These re- parent-specific products. The genes for SNRPN (Glenn
et al. 1993, 1996; Nakao et al. 1994; Reed and Leffsults (table 1) exclude the presence of maternal UPD 15

as the cause of the findings in the proband. 1994), IPW (Wevrick et al. 1994), as well as the ex-
pressed transcripts for PAR-1 and PAR-5 (Sutcliffe etTo determine whether an imprinting mutation might

be present in this proband, methylation analysis of DNA al. 1994), yield paternal-specific products only. RT-PCR
studies revealed a product for SNRPN and PAR-5 infrom the proband was done by use of probes for

ZNF127 (DN34) and the SNRPN promoter region. the patient, whereas for the IPW gene and the PAR-1
expressed transcript, both located below the break, noThese studies revealed that the proband did not have an

imprinting mutation. product could be detected (fig. 6).

Parental Origin of the Translocation Discussion
Cytogenetic analysis of parental blood revealed that

Although the majority of cases of PWS are associatedboth parents had normal chromosomes and that the re-
with either a visible deletion of proximal 15q (Ledbetterarrangement was de novo, but studies of the short arm
et al. 1981; Butler 1990) or maternal UPD (Robinsonof chromosome 15 suggested that the rearrangement
et al. 1991; Mascari et al. 1992), more-recent studieswas paternal in origin (data not shown). Microsatellite
have also implicated a defect in the putative imprinting(table 1) and methylation analysis (data not shown) of
center on chromosome 15q (Sutcliffe et al. 1994). De-somatic-cell hybrids revealed that the der(15) retained
spite this understanding, the genes and pathogenesis re-in the hybrid did not contain the maternal alleles, con-
sponsible for this common genetic disorder remain elu-firming the paternal origin.
sive. In this study we have reported an individual with

RT-PCR Analysis a balanced translocation involving the PWS/AS critical
region of chromosome 15 who exhibits a PWS-atypicalRecently, several different genes and expressed tran-

scripts isolated to the PWS/AS critical region have shown phenotype. This case, together with two previously pub-
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Table 1

Microsatellite Analysis of Mother, Proband, and
Hybrid Containing der(15)

Locus Mother Proband Hybrida

D15S541 1,1 1,2 2
D15S18 2,2 1,2 ND
D15S11 1,2 2,2 ND
D15S128 2,2 1,2 1
D15S122 1,3 2,3 . . .
D15S113 1,2 1,1 ND
GABRA5 2,2 1,2 . . .
D15S111 1,1 1,1 . . .
D15S165 1,3 1,2 ND

a ND Å not determined; an ellipsis (. . .) denotes absence.

but this can be confirmed only by cloning and sequenc-
ing the breakpoint DNA on both the der(2) and the
der(15). Studies with somatic-cell hybrids demonstrated
that the de novo rearrangement was paternal in origin.
However, methylation analysis of two loci, which could
indicate an abnormality in the paternal imprinting, was
normal. Therefore, no explanation for the proband’s

Figure 4 FISH using phage clone l48.34. FISH with this probe phenotype could be derived from this information.not only showed hybridization to the normal chromosome 15 but also
Since no deletion or methylation defect could be de-demonstrated a split signal hybridizing to both the der(2) and the

tected, RT-PCR was used to study two paternally im-der(15).

printed genes (SNRPN and IPW) and two paternally
imprinted transcripts (PAR-1 and PAR-5) from the
PWS/AS critical region (Sutcliffe et al. 1994; Wevrick etlished cases, has the potential to contribute significantly
al. 1994; Glenn et al. 1996). Expression of SNRPN andto our understanding of which genes within the deleted
PAR-5, both of which are located 5� to the breakpoint,region may contribute to the phenotype.
was detected in lymphoblast cells. However, no product

Delineation of the Abnormality could be detected for either IPW or PAR-1, both of
which are located 3� to the break. Three possible expla-High-resolution chromosomal analysis of the pro-

band in this study revealed an apparently balanced nations for the lack of IPW/PAR-1 expression are sug-
gested. First, proper imprinting may not have occurred,translocation that involves a break in 15q11-q13. Subse-

quent FISH with phage probes revealed one phage clone and hence the rearrangement occurred prior to resetting
of the imprint. Second, some of the PWS genes are si-(l48.34) that was split between the der(2) and the

der(15) in the proband. Since this probe was only 12 kb lenced because of another mechanism (such as deletion
of gene promotors/enhancers or position effects). Third,in size, it has been assumed that no deletion is present,

Figure 5 Physical map of the breakpoint region. Phage clone l48.34 spans the breakpoint in the patient.
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the importance of IPW and/or other genes in contribut-
ing to classical PWS manifestations.

The study by Sun et al. (1996) would suggest that the
imprint most likely was set prior to the translocation
event. Alternatively, genes may be activated by position
effect, or, less likely, it may be possible for the signal
from the imprinting center to function in a trans config-
uration. In addition, the precise location of the break
might be of importance. It is possible that, both in the
case that we studied and in that reported by Schulze et
al. (1996), an uncharacterized portion of the IPW gene
(e.g., the promoter region) may be broken, leading to
the lack of expression. Characterization of the IPW gene
promoter and identification of molecular signatures of
imprint setting (e.g., DNA methylation) telomeric to
SNRPN will allow further understanding of how bal-Figure 6 RT-PCR analysis showing the products of SNRPN,
anced translocations in and around the SNRPN-IPWPAR-5, IPW, and PAR-1 in the normal controls and in an AS patient.

The PWS deletion patient does not show a product in either the genes genomic region cause PWS and PWS-like phenotypes.
or the transcripts. The proband shows a product for SNRPN and
PAR-5 but not for IPW or PAR-1.
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